3.1.44 \(\int \frac {(a+b \log (\frac {\sqrt {1-c x}}{\sqrt {1+c x}}))^3}{1-c^2 x^2} \, dx\) [44]

3.1.44.1 Optimal result
3.1.44.2 Mathematica [A] (verified)
3.1.44.3 Rubi [A] (warning: unable to verify)
3.1.44.4 Maple [F]
3.1.44.5 Fricas [B] (verification not implemented)
3.1.44.6 Sympy [B] (verification not implemented)
3.1.44.7 Maxima [B] (verification not implemented)
3.1.44.8 Giac [F]
3.1.44.9 Mupad [F(-1)]

3.1.44.1 Optimal result

Integrand size = 40, antiderivative size = 37 \[ \int \frac {\left (a+b \log \left (\frac {\sqrt {1-c x}}{\sqrt {1+c x}}\right )\right )^3}{1-c^2 x^2} \, dx=-\frac {\left (a+b \log \left (\frac {\sqrt {1-c x}}{\sqrt {1+c x}}\right )\right )^4}{4 b c} \]

output
-1/4*(a+b*ln((-c*x+1)^(1/2)/(c*x+1)^(1/2)))^4/b/c
 
3.1.44.2 Mathematica [A] (verified)

Time = 0.01 (sec) , antiderivative size = 37, normalized size of antiderivative = 1.00 \[ \int \frac {\left (a+b \log \left (\frac {\sqrt {1-c x}}{\sqrt {1+c x}}\right )\right )^3}{1-c^2 x^2} \, dx=-\frac {\left (a+b \log \left (\frac {\sqrt {1-c x}}{\sqrt {1+c x}}\right )\right )^4}{4 b c} \]

input
Integrate[(a + b*Log[Sqrt[1 - c*x]/Sqrt[1 + c*x]])^3/(1 - c^2*x^2),x]
 
output
-1/4*(a + b*Log[Sqrt[1 - c*x]/Sqrt[1 + c*x]])^4/(b*c)
 
3.1.44.3 Rubi [A] (warning: unable to verify)

Time = 0.33 (sec) , antiderivative size = 25, normalized size of antiderivative = 0.68, number of steps used = 6, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.125, Rules used = {2973, 2976, 27, 2739, 15}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\left (a+b \log \left (\frac {\sqrt {1-c x}}{\sqrt {c x+1}}\right )\right )^3}{1-c^2 x^2} \, dx\)

\(\Big \downarrow \) 2973

\(\displaystyle \int \frac {\left (a+b \log \left (\frac {\sqrt {1-c x}}{\sqrt {c x+1}}\right )\right )^3}{1-c^2 x^2}dx\)

\(\Big \downarrow \) 2976

\(\displaystyle -2 c \int \frac {(c x+1) \left (a+b \log \left (\sqrt {\frac {1-c x}{c x+1}}\right )\right )^3}{4 c^2 (1-c x)}d\frac {1-c x}{c x+1}\)

\(\Big \downarrow \) 27

\(\displaystyle -\frac {\int \frac {(c x+1) \left (a+b \log \left (\sqrt {\frac {1-c x}{c x+1}}\right )\right )^3}{1-c x}d\frac {1-c x}{c x+1}}{2 c}\)

\(\Big \downarrow \) 2739

\(\displaystyle -\frac {\int \frac {(1-c x)^3}{(c x+1)^3}d\left (a+b \log \left (\sqrt {\frac {1-c x}{c x+1}}\right )\right )}{b c}\)

\(\Big \downarrow \) 15

\(\displaystyle -\frac {(1-c x)^4}{4 b c (c x+1)^4}\)

input
Int[(a + b*Log[Sqrt[1 - c*x]/Sqrt[1 + c*x]])^3/(1 - c^2*x^2),x]
 
output
-1/4*(1 - c*x)^4/(b*c*(1 + c*x)^4)
 

3.1.44.3.1 Defintions of rubi rules used

rule 15
Int[(a_.)*(x_)^(m_.), x_Symbol] :> Simp[a*(x^(m + 1)/(m + 1)), x] /; FreeQ[ 
{a, m}, x] && NeQ[m, -1]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 2739
Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))^(p_.)/(x_), x_Symbol] :> Simp[1/( 
b*n)   Subst[Int[x^p, x], x, a + b*Log[c*x^n]], x] /; FreeQ[{a, b, c, n, p} 
, x]
 

rule 2973
Int[((A_.) + Log[(e_.)*(u_)^(n_.)*(v_)^(mn_)]*(B_.))^(p_.)*(w_.), x_Symbol] 
 :> Subst[Int[w*(A + B*Log[e*(u/v)^n])^p, x], e*(u/v)^n, e*(u^n/v^n)] /; Fr 
eeQ[{e, A, B, n, p}, x] && EqQ[n + mn, 0] && LinearQ[{u, v}, x] &&  !Intege 
rQ[n]
 

rule 2976
Int[((A_.) + Log[(e_.)*(((a_.) + (b_.)*(x_))/((c_.) + (d_.)*(x_)))^(n_.)]*( 
B_.))^(p_.)*(P2x_)^(m_.), x_Symbol] :> With[{f = Coeff[P2x, x, 0], g = Coef 
f[P2x, x, 1], h = Coeff[P2x, x, 2]}, Simp[(b*c - a*d)   Subst[Int[(b^2*f - 
a*b*g + a^2*h - (2*b*d*f - b*c*g - a*d*g + 2*a*c*h)*x + (d^2*f - c*d*g + c^ 
2*h)*x^2)^m*((A + B*Log[e*x^n])^p/(b - d*x)^(2*(m + 1))), x], x, (a + b*x)/ 
(c + d*x)], x]] /; FreeQ[{a, b, c, d, e, A, B, n}, x] && PolyQ[P2x, x, 2] & 
& NeQ[b*c - a*d, 0] && IntegerQ[m] && IGtQ[p, 0]
 
3.1.44.4 Maple [F]

\[\int \frac {\left (a +b \ln \left (\frac {\sqrt {-x c +1}}{\sqrt {x c +1}}\right )\right )^{3}}{-x^{2} c^{2}+1}d x\]

input
int((a+b*ln((-c*x+1)^(1/2)/(c*x+1)^(1/2)))^3/(-c^2*x^2+1),x)
 
output
int((a+b*ln((-c*x+1)^(1/2)/(c*x+1)^(1/2)))^3/(-c^2*x^2+1),x)
 
3.1.44.5 Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 101 vs. \(2 (31) = 62\).

Time = 0.31 (sec) , antiderivative size = 101, normalized size of antiderivative = 2.73 \[ \int \frac {\left (a+b \log \left (\frac {\sqrt {1-c x}}{\sqrt {1+c x}}\right )\right )^3}{1-c^2 x^2} \, dx=-\frac {b^{3} \log \left (\frac {\sqrt {-c x + 1}}{\sqrt {c x + 1}}\right )^{4} + 4 \, a b^{2} \log \left (\frac {\sqrt {-c x + 1}}{\sqrt {c x + 1}}\right )^{3} + 6 \, a^{2} b \log \left (\frac {\sqrt {-c x + 1}}{\sqrt {c x + 1}}\right )^{2} + 4 \, a^{3} \log \left (\frac {\sqrt {-c x + 1}}{\sqrt {c x + 1}}\right )}{4 \, c} \]

input
integrate((a+b*log((-c*x+1)^(1/2)/(c*x+1)^(1/2)))^3/(-c^2*x^2+1),x, algori 
thm="fricas")
 
output
-1/4*(b^3*log(sqrt(-c*x + 1)/sqrt(c*x + 1))^4 + 4*a*b^2*log(sqrt(-c*x + 1) 
/sqrt(c*x + 1))^3 + 6*a^2*b*log(sqrt(-c*x + 1)/sqrt(c*x + 1))^2 + 4*a^3*lo 
g(sqrt(-c*x + 1)/sqrt(c*x + 1)))/c
 
3.1.44.6 Sympy [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 65 vs. \(2 (29) = 58\).

Time = 4.51 (sec) , antiderivative size = 65, normalized size of antiderivative = 1.76 \[ \int \frac {\left (a+b \log \left (\frac {\sqrt {1-c x}}{\sqrt {1+c x}}\right )\right )^3}{1-c^2 x^2} \, dx=\begin {cases} - \frac {a^{3} \operatorname {atan}{\left (\frac {x}{\sqrt {- \frac {1}{c^{2}}}} \right )}}{c^{2} \sqrt {- \frac {1}{c^{2}}}} & \text {for}\: b = 0 \\a^{3} x & \text {for}\: c = 0 \\- \frac {\left (a + b \log {\left (\frac {\sqrt {- c x + 1}}{\sqrt {c x + 1}} \right )}\right )^{4}}{4 b c} & \text {otherwise} \end {cases} \]

input
integrate((a+b*ln((-c*x+1)**(1/2)/(c*x+1)**(1/2)))**3/(-c**2*x**2+1),x)
 
output
Piecewise((-a**3*atan(x/sqrt(-1/c**2))/(c**2*sqrt(-1/c**2)), Eq(b, 0)), (a 
**3*x, Eq(c, 0)), (-(a + b*log(sqrt(-c*x + 1)/sqrt(c*x + 1)))**4/(4*b*c), 
True))
 
3.1.44.7 Maxima [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 526 vs. \(2 (31) = 62\).

Time = 0.24 (sec) , antiderivative size = 526, normalized size of antiderivative = 14.22 \[ \int \frac {\left (a+b \log \left (\frac {\sqrt {1-c x}}{\sqrt {1+c x}}\right )\right )^3}{1-c^2 x^2} \, dx=\frac {1}{2} \, b^{3} {\left (\frac {\log \left (c x + 1\right )}{c} - \frac {\log \left (c x - 1\right )}{c}\right )} \log \left (\frac {\sqrt {-c x + 1}}{\sqrt {c x + 1}}\right )^{3} + \frac {3}{2} \, a b^{2} {\left (\frac {\log \left (c x + 1\right )}{c} - \frac {\log \left (c x - 1\right )}{c}\right )} \log \left (\frac {\sqrt {-c x + 1}}{\sqrt {c x + 1}}\right )^{2} + \frac {3}{2} \, a^{2} b {\left (\frac {\log \left (c x + 1\right )}{c} - \frac {\log \left (c x - 1\right )}{c}\right )} \log \left (\frac {\sqrt {-c x + 1}}{\sqrt {c x + 1}}\right ) + \frac {1}{64} \, {\left (\frac {24 \, {\left (\log \left (c x + 1\right )^{2} - 2 \, \log \left (c x + 1\right ) \log \left (c x - 1\right ) + \log \left (c x - 1\right )^{2}\right )} \log \left (\frac {\sqrt {-c x + 1}}{\sqrt {c x + 1}}\right )^{2}}{c} + \frac {8 \, {\left (\log \left (c x + 1\right )^{3} - 3 \, \log \left (c x + 1\right )^{2} \log \left (c x - 1\right ) + 3 \, \log \left (c x + 1\right ) \log \left (c x - 1\right )^{2} - \log \left (c x - 1\right )^{3}\right )} \log \left (\frac {\sqrt {-c x + 1}}{\sqrt {c x + 1}}\right )}{c} + \frac {\log \left (c x + 1\right )^{4} - 4 \, \log \left (c x + 1\right )^{3} \log \left (c x - 1\right ) + 6 \, \log \left (c x + 1\right )^{2} \log \left (c x - 1\right )^{2} - 4 \, \log \left (c x + 1\right ) \log \left (c x - 1\right )^{3} + \log \left (c x - 1\right )^{4}}{c}\right )} b^{3} + \frac {1}{8} \, a b^{2} {\left (\frac {6 \, {\left (\log \left (c x + 1\right )^{2} - 2 \, \log \left (c x + 1\right ) \log \left (c x - 1\right ) + \log \left (c x - 1\right )^{2}\right )} \log \left (\frac {\sqrt {-c x + 1}}{\sqrt {c x + 1}}\right )}{c} + \frac {\log \left (c x + 1\right )^{3} - 3 \, \log \left (c x + 1\right )^{2} \log \left (c x - 1\right ) + 3 \, \log \left (c x + 1\right ) \log \left (c x - 1\right )^{2} - \log \left (c x - 1\right )^{3}}{c}\right )} + \frac {1}{2} \, a^{3} {\left (\frac {\log \left (c x + 1\right )}{c} - \frac {\log \left (c x - 1\right )}{c}\right )} + \frac {3 \, {\left (\log \left (c x + 1\right )^{2} - 2 \, \log \left (c x + 1\right ) \log \left (c x - 1\right ) + \log \left (c x - 1\right )^{2}\right )} a^{2} b}{8 \, c} \]

input
integrate((a+b*log((-c*x+1)^(1/2)/(c*x+1)^(1/2)))^3/(-c^2*x^2+1),x, algori 
thm="maxima")
 
output
1/2*b^3*(log(c*x + 1)/c - log(c*x - 1)/c)*log(sqrt(-c*x + 1)/sqrt(c*x + 1) 
)^3 + 3/2*a*b^2*(log(c*x + 1)/c - log(c*x - 1)/c)*log(sqrt(-c*x + 1)/sqrt( 
c*x + 1))^2 + 3/2*a^2*b*(log(c*x + 1)/c - log(c*x - 1)/c)*log(sqrt(-c*x + 
1)/sqrt(c*x + 1)) + 1/64*(24*(log(c*x + 1)^2 - 2*log(c*x + 1)*log(c*x - 1) 
 + log(c*x - 1)^2)*log(sqrt(-c*x + 1)/sqrt(c*x + 1))^2/c + 8*(log(c*x + 1) 
^3 - 3*log(c*x + 1)^2*log(c*x - 1) + 3*log(c*x + 1)*log(c*x - 1)^2 - log(c 
*x - 1)^3)*log(sqrt(-c*x + 1)/sqrt(c*x + 1))/c + (log(c*x + 1)^4 - 4*log(c 
*x + 1)^3*log(c*x - 1) + 6*log(c*x + 1)^2*log(c*x - 1)^2 - 4*log(c*x + 1)* 
log(c*x - 1)^3 + log(c*x - 1)^4)/c)*b^3 + 1/8*a*b^2*(6*(log(c*x + 1)^2 - 2 
*log(c*x + 1)*log(c*x - 1) + log(c*x - 1)^2)*log(sqrt(-c*x + 1)/sqrt(c*x + 
 1))/c + (log(c*x + 1)^3 - 3*log(c*x + 1)^2*log(c*x - 1) + 3*log(c*x + 1)* 
log(c*x - 1)^2 - log(c*x - 1)^3)/c) + 1/2*a^3*(log(c*x + 1)/c - log(c*x - 
1)/c) + 3/8*(log(c*x + 1)^2 - 2*log(c*x + 1)*log(c*x - 1) + log(c*x - 1)^2 
)*a^2*b/c
 
3.1.44.8 Giac [F]

\[ \int \frac {\left (a+b \log \left (\frac {\sqrt {1-c x}}{\sqrt {1+c x}}\right )\right )^3}{1-c^2 x^2} \, dx=\int { -\frac {{\left (b \log \left (\frac {\sqrt {-c x + 1}}{\sqrt {c x + 1}}\right ) + a\right )}^{3}}{c^{2} x^{2} - 1} \,d x } \]

input
integrate((a+b*log((-c*x+1)^(1/2)/(c*x+1)^(1/2)))^3/(-c^2*x^2+1),x, algori 
thm="giac")
 
output
integrate(-(b*log(sqrt(-c*x + 1)/sqrt(c*x + 1)) + a)^3/(c^2*x^2 - 1), x)
 
3.1.44.9 Mupad [F(-1)]

Timed out. \[ \int \frac {\left (a+b \log \left (\frac {\sqrt {1-c x}}{\sqrt {1+c x}}\right )\right )^3}{1-c^2 x^2} \, dx=\int -\frac {{\left (a+b\,\ln \left (\frac {\sqrt {1-c\,x}}{\sqrt {c\,x+1}}\right )\right )}^3}{c^2\,x^2-1} \,d x \]

input
int(-(a + b*log((1 - c*x)^(1/2)/(c*x + 1)^(1/2)))^3/(c^2*x^2 - 1),x)
 
output
int(-(a + b*log((1 - c*x)^(1/2)/(c*x + 1)^(1/2)))^3/(c^2*x^2 - 1), x)